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ABSTRACT

Given a random field bilonging to some specific class, and given a data sample gen-
erated by the random field, ie consider,,the problem of finding a field of the given class
that approximates the field that generated the sample. This paper derives a solution to
this problem for the simple case of a field consisting of independent random variables.
Subsequent papers will treat other types of fields, e.g., having Markov dependencies.
Numerical examples are given, showing that good approximations can be obtained based
on relatively small sample sizes. In particular, this approach can be used to find random
field models that generate given samples of image texture, and so can be applied to tex-
ture classification or segmentation.
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1. Introduction

1.1. The purpose of this research

In what follows we will consider the following

Problem:

Given a sample, determine the random field that generated it.

At first glance, this problem seems to be without solution, because of the lack of

sufficient data. In order to make the problem reasonable, it is necessary to

assume that the field is not arbitrary but belongs to some specific class, e.g.,

1) is composed of independent random variables

2) is first order Markov (e.g., in two dimensions, it is a Kanal mesh [1] [2])

3) is n-th order Markov

4) is weakly (second order) stationary

5) is strongly stationary

and so on.

Making one of these assumptions means that in reality we are not consider-

ing the problem of finding the field that generated the given sample, but some

other field that belongs to the given class and approximates the field that gen-

erated the given sample. In this paper we will not be interested in the problem V
of evaluating how good this approximation is, because this aspect is treated in

the author's papers [8] [9].
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In this series of papers we will study the problem in the case where the field

is assumed to be strongly stationary, with some additional restrictions.

1.2. Direction of the research

The first part of our research, presented in this paper, is concerned with the

simplest case, where we have a stationary field made up of independent random

variables; obviously, we may suppose that the field is one-dimensional.

The next stage of the research will consider the case of one-dimensional sim-

ple homogeneous Markov chains, followed by one-dimensional Markov homogene-

ous chains of higher order. Subsequent stages will study two- (or higher-) dimen-

sional Markov random fields (Kanal meshes), simple or of higher orders.

1.3. Digitization

In order to be able to deal with digitized data and at the same time to

reduce the complexity of the problem, we will consider only random fields with a

finite set of possible outcomes at each point. In order to extend these results to

the continuous case, we would have to consider some process of approximation,

such as that used by the author [3]-[7].

2. The direct theorem

2.1. Generalities

Let us consider a sequence of independent trials with possible outcomes

A i (1 < i < n) and corresponding probabilities pi > 0 (1 < i < n) adding up to

1. Each possible result of a series of s consecutive trials can be written as a

2
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sequence

C, = (Ak,, Ak, , Ak.) (2.1)

where each kr (1 < r < s) can take any value i(1 < i < n). Because of sta-

tionarity, the probability of occurrence of the sequence C, does not depend on the

moment when the trials begin; taking into consideration the independence of the

trials, this probability can be written as

P (CS) = f P (A,,) (2.2)
r-=l

Let us denote by mi (1 < i < n) the number of times the outcome A appears in

the sequence C,, so that

M s. (2.3)
i=1

The equality (2.2) can be written

1 m 0

P (C.):= P; (2.4)
3=1

In what follows we denote by

n1
H = Pi log (2.5)

the entropy of the random field characterized by the probabilities pi (1 < i < n).

and

n 1

P = Z log (2.6)
;=1 Pi

.1*!



Obviously

0 < P < (2.7)

2.2. The theorem

Let us denote by r* the class of all sequences C. For given 6> 0, s > 0 we

denote by r,I the set of all sequences C. E r, such that

In8 - spj < S6 (2.8)

for all i (1 < i < n), and by r s, its complement with respect to F,.

Definition. Sequences C, E rk,, will be called (,s)-standard sequences or simple

standard sequences.

Let us consider the equation

X2

. T1 e dx = (1-L) (2.9)
V2 iro 2 n

and let us denote by u (e) its solution.

Definition. Given c > 0, 6 > 0, s > n, condition A holds if

4 6 s > n (2.10)

and condition B holds if

4 6' s > u2 (E) (2.11)

Let us denote by N () the cardinality of a set.

4 '
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Theorem 1.

Let us suppose that at least one of the conditions A, B holds. Then

(a) If C, is a (6,s)-standard sequence, it follows that

0logp < 6P (2.12)

(b) P (r,,,) > 1 - f (2.13)

(c) lira 1log N(r,)= H8- 00 8 (2.14)a-.0o
6 - 0

Remark 1.

The relation (2.12) is equivalent to

2 -a(H+ 6P) < P (C,) < 2 -8(H-6p) (2.15)

i.e. to

P (C) = 2 -aH+ .6p8 101 < 1 (2.16)

Remark 2.

The relation (2.13) is equivalent to

Remark 3.

From (2.14) it follows that

N(r ,) 0 lim N(17,) = 1 (2.18)
lim Y_)Y _

Indeed, from (2.14) we obtain the relation

I,
ii



log N (r,) = $ (H + o(i) (2.19)

ioe.,

N(rr,) = 28(H + o(1 (2.20)

Taking into consideration that

N (r)= n8. = 2a o9 (2.21)

and because

H < log n, (2.22)

if follows that

N 2-,(osn-H+ () = 0(1) (2.23)

N (Ir)

which is equivalent to the first equality in (2.18), and

Y(rT0) N g(r0)-Ng(r,) __1 -= 1 + o(1) (2.24)
N (r,) N(r) (r,)

which is equivalent to the second equality in (2.18).

Remark 4.

Our Theorem 1 is closely related to some results which go back to Shannon

[10] and received a mathematically acceptable form from Khinchine [2].

Our Theorem 1(a), (b) refers to independent random variables, while that in

[2] refers to ergodic simple Markov chains, but our result is not a particular case

of that in [2]. Indeed, the results in 12] are existence theorems, considering that 6,

c can be taken as small and s as large as desired, while our results give effective

relations between 6, c, s in order that the results hold.

...
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Our Theorem 1(c) refers to the set J70 a of all standard sequences C, while

the result in ([2], Th. 3) refers to another set of sequences C,; our result contains

a limit for 6 - 0, s-- oo, while the result in ([2], Th. 3) contains a limit for

8- 00.

2.3. Proof

(a) Let us consider a sequence C E r.,,. From (2.8) it follows that

m = spi+ s60 10i; < 1 (1 < i < n) (2.25)

From (2.4) there follows the relation

n
log P (C,) = y m i log Pi (2.26)

and taking into consideration (2.25), there follows the equality

log P (C) = y (spi + s60,) log pi

n n (2.27)
Pi log pi + s6 y O log pi

i= 1 i= 1

which can also be written as

log P(C8 ) s0+s" O,log (2.28)
(= Pi

From (2.28) we obtain the result (a):

log < 6.<0Z log -< 6 E log -= p (2.29)
S(CI pi i= I Pi

7
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(b) Instead of proving inequality (2.13) we will prove (2.17). In order that a

sequence C E r, belong to r"., it is necessary that for at least some value

of i (1 < i < n) the inequality (2.8) does not hold, i.e.,

*n

68= U Imi- spi > s6 (2.30)
si'

so that

P (r"")=P(Umj pi s > -6- E P {I m-sP1  > 86} (2.31)

(bi) Let us assume that condition A holds. It is known from the elements of the

Theory of probability that

P{imi - s p i > s6} < (2.32)

But for 0 < x < 1, we have the inequalities

0 < X(1-X) 1 (2.33)
1

where the maximum value is reached for x = -, so that from (2.32) it fol-

lows that

P{ Im,- sp8 I > s6} < 1 (1 < i< n) (2.3-1)

- 4s6'

Consequently, from (2.31) there follows the inequality

(r' ) < (2.3.5)
-- 4s& 2-

and because of (2.10), it follows that (2.17) holds.

8
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(b2) Let us assume that condition B holds. From the Central limit theorem in

the Moivre-Laplace form, it is known that

2_____ -  (2.36)

2- fe 2 dx (1<,In)

so that

2 2 (2.37)
p (IM- Spi > -sj e" dx, (1 < i < n)

In order to obtain the relation (2.17) it is sufficient to take

2 f t- < n) (2.38)
e dx<- (1<i<n)

i.e., .

1 2 (2.39)
e dx> - < t< n)

21i v; (inn

which is equivalent to the inequality

6 p, (l-p.) > U (e) (1 < i < n) (2.40)

Because of (2.33), we have the inequality

6 Pi (L-pi) > 26V/7 (1 _ i _ n) (2.1)

No %



so that in order to satisfy (2.40) it is sufficient to take in consideration Con-

dition B (2.11), i.e.

26v' > u (c) (2.42)

(c) If C8 E rb, then (2.15) holds, so that

N(F ) 2-8(H+ 6P) < E P(C) = P (r,) < 1 (2.43)

where the summation is for all C8 E l'1,. From (2.43) there follows the rela-

tion

- log N (rF, ) < H + 6p (2.44)
S

In a similar way, from (2.13), (2.15) there follow the relations

1- e < P(PF6) = F P(C)< N(r,) 2 -8(H-6p) (2.45)

where the summation is also for all C, E F,. From (2.45) we obtain the

relation

H- bp < _ log N(rJ°) + I log (2.46)
S ' S

From (2.44), (2.46) it follows that

1 1 1
H -p- 0 <  -log N (r",) < H + bp (2.47)

--- e S

For c given, arbitrary, 6 as small as we want, and s as large as we want,

because of (2.7) it follows that (2.14) holds.

10
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3. The inverse theorem

3.1. Generalities

Let 6 > 0, c > 0, s > 1, and let CO be an arbitrary specific sequence,

belonging to rP. Let us assume that one of the conditions A or B holds.

In what follows we assume that C' is generated by a sequence of indepen-

dent trials, with possible outcomes A, (1 < i < n) with unknown probabilities

pi (1 < i < n), and we will try to determine some intervals in which these proba-

bilities can take values. Let us denote

m?= M(C")< i < n) (3.1)

and by W{S} the confidence of statement S.

3.2. The theorem
o.

Because we have proved that

it follows that with confidence larger than 1 - E, CO E r ,, i.e.,

W( ImpO- Sp i l < 6s (1 < i < n)}I > I - (3.3)

i.e.,

J mi > (3.4)Wf- m O - < Pi < --r O + < , ( i< n)} - 34

Let L. be the Banach space of all vectors

11
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- .-.p -- .7 3W

q= (qj, qn)(35

with qj real numbers of any sign, with norm

Ikilj = sup{I IqiI; 1i < n} (3.6)

Let In, be the totality of probability measures

P (Pi. .,Pn) (3.7)

with p >0(l< i < n), and

Pi (3.8)

This is a metric space with distance

11P -P'11 sup(3.9)

where P, 9' E f,~ P - p' E Ln. If p, p' E fln are two different solutions, satisfying

the inequalities in (3.4), it follows that

1pi pliI < 6 (1< i n) 3.10

so that from (3.9) it follows that

11p - p'l < 26 (3.11)

We have thus proved

Theorem 2.

Let us assume that

12



(1) e, 6, a satisfy one of the conditions A, B;

(2) the arbitrary sequence Co. E r, is generated by an independent identically

distributed sequence of trials, with unknown probabilities pi (1 < i < n).

Then

(a) The relation (3.4) holds.

(b) If p, p' are two different solutions, their distance in I is less than 26.

Remark 4.

Let L' be the Banach space of all vectors (3.5) with norm the total variation

IIIqII = X IqI (3.12)
i-=1

Then ,I is a metric space with distance

n
IIIp- 'i-= F IP,- PXI (3.13)

/i-1

where p, P' E H.

If p, 91 E rl are two different solutions, satisfying (3.4), it follows from (3.13)

that

II1p - p111 < 2n6 (3.14)

It is easy to see that

11p -ip- ll < 111p - p'111 _< ,lip - pII (3.15)

We remark also that if L,"' is the Euclidean space of all vectors (3.5) with

norm

13
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-1

((q)) q 1i (3.16)

then l n i a Euclidean space with distance

!(( - T , ))= Xi F:' (

It is easy to see that

I Ip - pll 1 : ((p - p)) :5 vfnjI p- pl 1 (3.18)

4. Examples

4.1. Examples under Condition A

Let CO, be a sequence with n = 2, 8 = 104, E = 2-3 0.125, 6 > 0.02, so

that condition A holds. Let m° =3 X 103, 4----7 X 103.

From (3.4) it follows that

W{ 0.28 < p, < 0.32; 0.68 < p2 < 0.72} > 0.875 (4.1)

and from (3.11) we obtain

ip- pIll < 0.04 (4.2)

Example 2.

Let CO be a sequence with n = 2, s = 10 , f 2-3 -= 0.125, 6 > 0.002, so

that condition A holds. Let m° - 3 X 101, -7 X 105 .

14
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From (3.4) it follows that

W1 0.298 < p, < 0.302; 0.698 < P2 < 0.702} > 0.875 (4.3)

and from (3.11) we obtain

lip- pill < 0.004 (4.4)

4.2. Examples under Condition B

Example 3.

Let CO, be a sequence with n = 2, c = 2-- 0.125, s 1 i0 4 , 6 > 0.009,

re= 3 X 103, m - 7 X 103 , so that

-1 - = 0.46875 (4.5)

LL 2 d>0467(4)

and relation (2.39) takes the form

1 fU (e) C-2 dx > 0.46875(46

which holds for

u (E) > 1.8 (4.7)

Considering Condition B in form (1.42) it is easy to see that it holds. From

(3.4) it follows that

Wj0.291 < p, < 0.309 ;0.601 < P2 < 0.709 > 0.875 (4.8)

a3 o

and from (3.11) it follows that

* !



lip - P'll < 0.018 (4.9)

Example 4.

Let C, be a sequence with n = 2, f = 2- = 0.125, s = 106, 6 > 0.0009,

m ° -= 3 X 102, m ° - 7 X 10; in this case, relations (4.5)-(4.8) hold, so that

Condition B holds. From (3.4) it follows that

W1 0.2991 < p, < 0.3000; 0.6991 < P2 < 0.7009 > 0.875 (4.10)

and from (3.11) it follows that

lip - 'll < 0.0018 (4.11)

4.3. Examples involving images that satisfy Condition A or B

Let us consider a digital television picture, i.e., an array of 5002 points,

where each point can have 256 levels of gray.

Here n -- 256, s = 5002 = 250,000; let e 1 = 0.00390625.
256

Taking these values, if we want Condition A satisfied it is sufficient that

42 X 250,000 X - > 256 (4.12)

or

106 62 > 2562 , (4.13)

i.e.,

6> 0.256 (4.14)

I =, ,% % • =o t ,"-..... , -. % . % ,. ._% % ,- , -, .% % % . ,..• . . .. . . . . . . - - . , %.18%.,



Consequently

W - pi < 0.256; (1 < i < 256) > 0.9060937 (4.15)

with

IIp-p'll = max{IP-P:I, 1 < s<256} <0.512 (4.16)

Example 6.

With the same basic data as in Example 5, we take n = 256, s = 5002,
1
- -0.00390625, and we consider that Condition B holds, i.e.,256

26V' > u (f) (4.17)

Here

7 i- T 1 26 1 1 653

I I] 1 (1-0.16667) 3 33 4 (4.18)
2 1 6000 2

0.41667

so that from tables it follows that

u () 1.30 (4.19)

Thus

26 X 500 > 1.30 (4.20)

i.e.,

6 > 0.0013 (4.21)

So

17
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- p < 0.0013 ; (1 < i < 256) > 0.0960037 (4.22)

and

Ilip - ll < 0.0026 (4.23)

Example 7.

Let us takce n = 256, S =-5002, _ 0.0625, and let us assume that
16

Condition A holds. Then

4b2 X 250,000 X - > 256 (4.24)
i.e.,

106 62 > 212 (4.25)

or

6 > 0.064 (4.26)
so that

W < 0.064 1 < i< 256 > 0.9375 (4.27)

Ilp- p'l < 0.128 (4.28)
I,-I

ExamDle 8.

Let n = 256, s 250,000, - 0.0625 and let us assume that Condi-

tion B holds. Then

..'

° 1% ° " -.-..-.° ° % -.°.°."o-°°. .° o. . .o. . . - -. - ° . .-18
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n 2 16 25 4096 2 4000I" (4.29)
(1 -0.00025) X × 0.09975 = 0.40987

2 2

so that

u (f) - 3.8 (4.30)
i.e.,

26 X 500 > 3.8 (4.31)

or

6 > 0.0038 (4.32)

Thus

W -i < 0.0038; 1 < I< 2 5 6  > 0.0375 (4.33)

11p- pll < 0.0076 (4.34)

Examnle 9.

Let us assume that we have a 30-minute sequence of TV pictures. If we have

32 pictures in each second, we have a total of

'- 24

32 X 60 X 30 = 2 X 602  (4.35)

pictures, succeeding each other in time. Assuming independence between

the pictures, we have n = 256, s = 5002 X 2' X 602, and let

-= -25 0.00390625. Assuming that Condition A holds, the value of 6

is given by

46 (250,000) X 24 X 602 X 1 > 256 (4.36)

1 256



or

10662 X 24 X 602 > 2562 (4.37)
i.e.,

103 6 X 22 X 60 > 256 (4.38)

Then

6 > 256 > 0.001 (4.39)102 X 240

Consequently

Wj~ .! - Pi < 0.001 ; (1 < i < 256) > 0.9960937 (4.40)

and

Ip - Al < 0.002 (4.41)

Let us consider the same problem as in Example 9, with the supposition that

Condition B holds.

In this case

26 (500 X 22 X 60) > 1.30 (4.42)

i.e.,

13
6>2,400,000 - 0.0000054 (4.43)

so that

W1 Pi < 0.000054 ; I i < 256) > 0.9960937 (4.44)

and

IIP - P1I < 0.0000108 (4.45)

20
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